0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 IDP
↳23 IDPNonInfProof (⇐)
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load4301(x1, x2, x3) → Cond_Load4301(x1, x2)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i80[0] →* i80[1])∧(i69[0] →* i69[1])∧(i80[0] > 0 →* TRUE))
(1) -> (0), if ((i69[1] →* i69[0])∧(i80[1] + -1 →* i80[0]))
(1) -> (4), if ((i80[1] + -1 →* 0)∧(i69[1] →* i69[4]))
(2) -> (3), if ((i69[2] →* i69[3])∧(i80[2] > 0 && i69[2] > 0 →* TRUE)∧(i80[2] →* i80[3]))
(3) -> (0), if ((i69[3] →* i69[0])∧(i80[3] + -1 →* i80[0]))
(3) -> (4), if ((i80[3] + -1 →* 0)∧(i69[3] →* i69[4]))
(4) -> (2), if ((0 →* i80[2])∧(i69[4] + -1 →* i69[2]))
(4) -> (5), if (i69[4] + -1 →* i69[5])
(5) -> (6), if ((i69[5] →* i69[6])∧(i69[5] > 0 →* TRUE))
(6) -> (2), if ((i69[6] + -1 →* i69[2])∧(0 →* i80[2]))
(6) -> (5), if (i69[6] + -1 →* i69[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i80[0] →* i80[1])∧(i69[0] →* i69[1])∧(i80[0] > 0 →* TRUE))
(1) -> (0), if ((i69[1] →* i69[0])∧(i80[1] + -1 →* i80[0]))
(1) -> (4), if ((i80[1] + -1 →* 0)∧(i69[1] →* i69[4]))
(2) -> (3), if ((i69[2] →* i69[3])∧(i80[2] > 0 && i69[2] > 0 →* TRUE)∧(i80[2] →* i80[3]))
(3) -> (0), if ((i69[3] →* i69[0])∧(i80[3] + -1 →* i80[0]))
(3) -> (4), if ((i80[3] + -1 →* 0)∧(i69[3] →* i69[4]))
(4) -> (2), if ((0 →* i80[2])∧(i69[4] + -1 →* i69[2]))
(4) -> (5), if (i69[4] + -1 →* i69[5])
(5) -> (6), if ((i69[5] →* i69[6])∧(i69[5] > 0 →* TRUE))
(6) -> (2), if ((i69[6] + -1 →* i69[2])∧(0 →* i80[2]))
(6) -> (5), if (i69[6] + -1 →* i69[5])
(1) (i80[0]=i80[1]∧i69[0]=i69[1]∧>(i80[0], 0)=TRUE ⇒ LOAD492(i69[0], i80[0])≥NonInfC∧LOAD492(i69[0], i80[0])≥COND_LOAD492(>(i80[0], 0), i69[0], i80[0])∧(UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥))
(2) (>(i80[0], 0)=TRUE ⇒ LOAD492(i69[0], i80[0])≥NonInfC∧LOAD492(i69[0], i80[0])≥COND_LOAD492(>(i80[0], 0), i69[0], i80[0])∧(UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥))
(3) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i69[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i69[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i69[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[bni_14] = 0∧[(-1)bni_14 + (-1)Bound*bni_14] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(7) (i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[bni_14] = 0∧[(-1)bni_14 + (-1)Bound*bni_14] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(8) (COND_LOAD492(TRUE, i69[1], i80[1])≥NonInfC∧COND_LOAD492(TRUE, i69[1], i80[1])≥LOAD492(i69[1], +(i80[1], -1))∧(UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥))
(9) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_17] ≥ 0)
(10) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_17] ≥ 0)
(11) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_17] ≥ 0)
(12) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(13) (i69[2]=i69[3]∧&&(>(i80[2], 0), >(i69[2], 0))=TRUE∧i80[2]=i80[3] ⇒ LOAD430(i69[2], i80[2])≥NonInfC∧LOAD430(i69[2], i80[2])≥COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])∧(UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥))
(14) (>(i80[2], 0)=TRUE∧>(i69[2], 0)=TRUE ⇒ LOAD430(i69[2], i80[2])≥NonInfC∧LOAD430(i69[2], i80[2])≥COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])∧(UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥))
(15) (i80[2] + [-1] ≥ 0∧i69[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]i69[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(16) (i80[2] + [-1] ≥ 0∧i69[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]i69[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(17) (i80[2] + [-1] ≥ 0∧i69[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]i69[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(18) (i80[2] ≥ 0∧i69[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]i69[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(19) (i80[2] ≥ 0∧i69[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])), ≥)∧[(-1)Bound*bni_18] + [bni_18]i69[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(20) (COND_LOAD430(TRUE, i69[3], i80[3])≥NonInfC∧COND_LOAD430(TRUE, i69[3], i80[3])≥LOAD492(i69[3], +(i80[3], -1))∧(UIncreasing(LOAD492(i69[3], +(i80[3], -1))), ≥))
(21) ((UIncreasing(LOAD492(i69[3], +(i80[3], -1))), ≥)∧[(-1)bso_21] ≥ 0)
(22) ((UIncreasing(LOAD492(i69[3], +(i80[3], -1))), ≥)∧[(-1)bso_21] ≥ 0)
(23) ((UIncreasing(LOAD492(i69[3], +(i80[3], -1))), ≥)∧[(-1)bso_21] ≥ 0)
(24) ((UIncreasing(LOAD492(i69[3], +(i80[3], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(25) (LOAD492(i69[4], 0)≥NonInfC∧LOAD492(i69[4], 0)≥LOAD430(+(i69[4], -1), 0)∧(UIncreasing(LOAD430(+(i69[4], -1), 0)), ≥))
(26) ((UIncreasing(LOAD430(+(i69[4], -1), 0)), ≥)∧[1 + (-1)bso_23] ≥ 0)
(27) ((UIncreasing(LOAD430(+(i69[4], -1), 0)), ≥)∧[1 + (-1)bso_23] ≥ 0)
(28) ((UIncreasing(LOAD430(+(i69[4], -1), 0)), ≥)∧[1 + (-1)bso_23] ≥ 0)
(29) ((UIncreasing(LOAD430(+(i69[4], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_23] ≥ 0)
(30) (i69[5]=i69[6]∧>(i69[5], 0)=TRUE ⇒ LOAD430(i69[5], 0)≥NonInfC∧LOAD430(i69[5], 0)≥COND_LOAD4301(>(i69[5], 0), i69[5])∧(UIncreasing(COND_LOAD4301(>(i69[5], 0), i69[5])), ≥))
(31) (>(i69[5], 0)=TRUE ⇒ LOAD430(i69[5], 0)≥NonInfC∧LOAD430(i69[5], 0)≥COND_LOAD4301(>(i69[5], 0), i69[5])∧(UIncreasing(COND_LOAD4301(>(i69[5], 0), i69[5])), ≥))
(32) (i69[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD4301(>(i69[5], 0), i69[5])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i69[5] ≥ 0∧[(-1)bso_25] ≥ 0)
(33) (i69[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD4301(>(i69[5], 0), i69[5])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i69[5] ≥ 0∧[(-1)bso_25] ≥ 0)
(34) (i69[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD4301(>(i69[5], 0), i69[5])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i69[5] ≥ 0∧[(-1)bso_25] ≥ 0)
(35) (i69[5] ≥ 0 ⇒ (UIncreasing(COND_LOAD4301(>(i69[5], 0), i69[5])), ≥)∧[(-1)Bound*bni_24] + [bni_24]i69[5] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (COND_LOAD4301(TRUE, i69[6])≥NonInfC∧COND_LOAD4301(TRUE, i69[6])≥LOAD430(+(i69[6], -1), 0)∧(UIncreasing(LOAD430(+(i69[6], -1), 0)), ≥))
(37) ((UIncreasing(LOAD430(+(i69[6], -1), 0)), ≥)∧[1 + (-1)bso_27] ≥ 0)
(38) ((UIncreasing(LOAD430(+(i69[6], -1), 0)), ≥)∧[1 + (-1)bso_27] ≥ 0)
(39) ((UIncreasing(LOAD430(+(i69[6], -1), 0)), ≥)∧[1 + (-1)bso_27] ≥ 0)
(40) ((UIncreasing(LOAD430(+(i69[6], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD492(x1, x2)) = [-1] + x1
POL(COND_LOAD492(x1, x2, x3)) = [-1] + x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(LOAD430(x1, x2)) = [-1] + x1
POL(COND_LOAD430(x1, x2, x3)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(COND_LOAD4301(x1, x2)) = [-1] + x2
LOAD492(i69[4], 0) → LOAD430(+(i69[4], -1), 0)
COND_LOAD4301(TRUE, i69[6]) → LOAD430(+(i69[6], -1), 0)
LOAD430(i69[2], i80[2]) → COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])
LOAD430(i69[5], 0) → COND_LOAD4301(>(i69[5], 0), i69[5])
LOAD492(i69[0], i80[0]) → COND_LOAD492(>(i80[0], 0), i69[0], i80[0])
COND_LOAD492(TRUE, i69[1], i80[1]) → LOAD492(i69[1], +(i80[1], -1))
LOAD430(i69[2], i80[2]) → COND_LOAD430(&&(>(i80[2], 0), >(i69[2], 0)), i69[2], i80[2])
COND_LOAD430(TRUE, i69[3], i80[3]) → LOAD492(i69[3], +(i80[3], -1))
LOAD430(i69[5], 0) → COND_LOAD4301(>(i69[5], 0), i69[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i69[1] →* i69[0])∧(i80[1] + -1 →* i80[0]))
(3) -> (0), if ((i69[3] →* i69[0])∧(i80[3] + -1 →* i80[0]))
(0) -> (1), if ((i80[0] →* i80[1])∧(i69[0] →* i69[1])∧(i80[0] > 0 →* TRUE))
(2) -> (3), if ((i69[2] →* i69[3])∧(i80[2] > 0 && i69[2] > 0 →* TRUE)∧(i80[2] →* i80[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i69[1] →* i69[0])∧(i80[1] + -1 →* i80[0]))
(0) -> (1), if ((i80[0] →* i80[1])∧(i69[0] →* i69[1])∧(i80[0] > 0 →* TRUE))
(1) (COND_LOAD492(TRUE, i69[1], i80[1])≥NonInfC∧COND_LOAD492(TRUE, i69[1], i80[1])≥LOAD492(i69[1], +(i80[1], -1))∧(UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥))
(2) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_7] ≥ 0)
(3) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_7] ≥ 0)
(4) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_7] ≥ 0)
(5) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧0 = 0∧[(-1)bso_7] ≥ 0)
(6) (i80[0]=i80[1]∧i69[0]=i69[1]∧>(i80[0], 0)=TRUE ⇒ LOAD492(i69[0], i80[0])≥NonInfC∧LOAD492(i69[0], i80[0])≥COND_LOAD492(>(i80[0], 0), i69[0], i80[0])∧(UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥))
(7) (>(i80[0], 0)=TRUE ⇒ LOAD492(i69[0], i80[0])≥NonInfC∧LOAD492(i69[0], i80[0])≥COND_LOAD492(>(i80[0], 0), i69[0], i80[0])∧(UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥))
(8) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i80[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(9) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i80[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(10) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i80[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(11) (i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(4)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i80[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD492(x1, x2, x3)) = [2]x3
POL(LOAD492(x1, x2)) = [2] + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
LOAD492(i69[0], i80[0]) → COND_LOAD492(>(i80[0], 0), i69[0], i80[0])
LOAD492(i69[0], i80[0]) → COND_LOAD492(>(i80[0], 0), i69[0], i80[0])
COND_LOAD492(TRUE, i69[1], i80[1]) → LOAD492(i69[1], +(i80[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i69[1] →* i69[0])∧(i80[1] + -1 →* i80[0]))
(3) -> (0), if ((i69[3] →* i69[0])∧(i80[3] + -1 →* i80[0]))
(0) -> (1), if ((i80[0] →* i80[1])∧(i69[0] →* i69[1])∧(i80[0] > 0 →* TRUE))
(1) -> (4), if ((i80[1] + -1 →* 0)∧(i69[1] →* i69[4]))
(3) -> (4), if ((i80[3] + -1 →* 0)∧(i69[3] →* i69[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i69[1] →* i69[0])∧(i80[1] + -1 →* i80[0]))
(0) -> (1), if ((i80[0] →* i80[1])∧(i69[0] →* i69[1])∧(i80[0] > 0 →* TRUE))
(1) (COND_LOAD492(TRUE, i69[1], i80[1])≥NonInfC∧COND_LOAD492(TRUE, i69[1], i80[1])≥LOAD492(i69[1], +(i80[1], -1))∧(UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥))
(2) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_8] ≥ 0)
(3) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_8] ≥ 0)
(4) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧[(-1)bso_8] ≥ 0)
(5) ((UIncreasing(LOAD492(i69[1], +(i80[1], -1))), ≥)∧0 = 0∧[(-1)bso_8] ≥ 0)
(6) (i80[0]=i80[1]∧i69[0]=i69[1]∧>(i80[0], 0)=TRUE ⇒ LOAD492(i69[0], i80[0])≥NonInfC∧LOAD492(i69[0], i80[0])≥COND_LOAD492(>(i80[0], 0), i69[0], i80[0])∧(UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥))
(7) (>(i80[0], 0)=TRUE ⇒ LOAD492(i69[0], i80[0])≥NonInfC∧LOAD492(i69[0], i80[0])≥COND_LOAD492(>(i80[0], 0), i69[0], i80[0])∧(UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥))
(8) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(9) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(10) (i80[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(11) (i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD492(>(i80[0], 0), i69[0], i80[0])), ≥)∧[(3)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD492(x1, x2, x3)) = [-1] + [2]x3
POL(LOAD492(x1, x2)) = [1] + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
LOAD492(i69[0], i80[0]) → COND_LOAD492(>(i80[0], 0), i69[0], i80[0])
LOAD492(i69[0], i80[0]) → COND_LOAD492(>(i80[0], 0), i69[0], i80[0])
COND_LOAD492(TRUE, i69[1], i80[1]) → LOAD492(i69[1], +(i80[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer